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Introduction 

PlayStation 3 motherboard

How to model signal integrity?

 full 3D numerical tools 

 direct access to multiport S-parameters 

and time-domain data

 holistic but time-consuming

 (some times too easily) believed to be accurate

 divide and conquer

 multiconductor lines, vias, connectors, packages, chips, ….

 model each of them with a dedicated tool

 derive a circuit model for each part

 obtain the S-parameters and time-domain data (eye-diagram, BER, crosstalk)

from overall circuit representation 

 gives more insight to the designer (optimisation)

 overall accuracy might be difficult to assess
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Introduction 

3D fields, charges, 

currents

simplify (idealize) to a 2D problem

2D fields, charges, currents

PlayStation 3 motherboard

Transmission lines

voltages & currents

RLGC

Multiconductor Transmission Lines
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Multiconductor TML 

N+1 conductors one of which

plays the role of reference conductor

reference

1 2 N…..

i : Nx1 current vector

v : Nx1 voltage vector

C : NxN capacitance matrix

L : NxN inductance matrix

G : NxN conductance matrix

R : NxN resistance matrix

Telegrapher’s equations (RLGC)
schematically

many possibilities
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Multiconductor TML 

on-chip interconnect example:

• 4 differential line pairs

• semi-conducting region

• unusual reference conductor

 broadband results (time-domain)

 many regions (some semi-conducting)

 good conductors (e.g. copper)

 small details

 exact current crowding and 

skin effect modelling

wish list number 1

reference

wish list number 2

 variability in cross-section

 variability along propagation direction

 stochastic responses

 prediction of stochastics for overall

interconnects (sources, via’s, lines, ..)

+
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Multiconductor TML 

 The manufacturing process introduces variability in the 
geometrical and material properties  but also along the signal 
propagation direction

 Deterministic excitations produce stochastic responses

Impurities: permittivity, 
loss tangent, etc.

Photolithography: trace separation

random 
parameters

shape
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 sources/unknowns : equivalent boundary currents

 preferred method: EFIE with 

L and R could be found by determining the magnetic fields due to 

equivalent contrast currents                                                placed in free space

RLGC – in brief 

cond.

diel.

cond.

C and G can be found by solving a classical potential problem in the cross-section:

 sources/unknowns : (equivalent) boundary charges

 preferred method: boundary integral equation

 relation between total charges and voltages Q = C V

cond.cond.

diel.

cond.cond.

diel.

?

Suppose we find a way to replace these currents by equivalent ones on the boundaries:
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Differential surface current  

(a)

 two non-magnetic media “out” & “in”

(conductor, semi-conductor, dielectric)

 separated by surface S

 fields inside E1, H1

 fields outside E0, H0

(b)

 we introduce a fictitious (differential)

surface current Js

 a single homogeneous medium “out”

 fields inside differ: E, H

 fields outside remain identical: E0, H0

in

out out

out

S S
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Differential Admittance 

Advantages

 modelling of the volume current crowding /skin-effect is avoided

 less unknowns are needed (volume versus surface)

 homogeneous medium: simplifies Green’s function

 valid for all frequences

 losses from DC to skin effect + “internal” inductance

can all be derived from Js and Etang on S

out

out

S

Disadvantage or Challenge 

The sought-after JS is related to Etang through a non-local surface admittance operator

in 3D

in 2D

admittance operator similar to jz(r) = s ez (r) but no longer purely local !

 How to obtain     ?
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Differential Admittance 

in 2D

 analytically using the Dirichlet eigenfunctions of S

 numerically for any S using a 2D integral equation  (prof. P. Triverio)

S

c

n

r

r’ A

B

in 3D

 analytically using the solenoidal eigenfunctions of the volume V 

 see e.g. Huynen et al. AWPL, 2017, p. 1052

V

S

n

r

r’ A

B



13

1 20

45 26

50
20 mm

5 mmcopper

1 20

45 26

50
20 mm

5 mmcopper

Admittance operator 

A

B

79.1 MHz - skin depth d = 7.43 mm -10 GHz skin depth d = 0.66 mm

A

B

(                     )
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Multiconductor TML 

reference

1 2 N…..
Telegrapher’s equations (RLGC)

Final result:

The 2-D per unit of length (p.u.l.) 

transmission line matrices R, L, G, and C, 

as a function of frequency

(see ref. [5])

 broadband results 

 many regions (some semi-conducting) 

 good conductors (e.g. copper) 

 small details 

 exact skin effect modelling 

wish list number 1
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Differential line pair

Examples 

er = 3.2

scopper = 5.8 107

tand = s/we0er = 0.008
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Differential line pair

Examples 

L11 = L22

L12 = L21

R11 = R22

R12 = R21
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Metal Insulator Semiconductor (MIS) line

Examples 

s = 50S/m

LDC = 422.73nH/m

CDC = 481.71pF/m
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Metal Insulator Semiconductor (MIS) line @ 1GHz

Examples 

good dielectric good conductor
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Examples 

Coated submicron signal conductor 

3117 nm

500 nm

500 nm

450 nm

450 nm

238 nm

copper: 1.7 mWcm

chromium: 12.9 mWcm

coating thickness d: 10 nm
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Examples 

inductance and resistance p.u.l 

as a function of frequency

L
R

Coated submicron signal conductor 
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Examples

aluminum

silicon

SiO2
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Examples 

Pair of coupled inverted embedded on-chip lines

Discretisation for solving the RLGC-problem
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Examples 

Pair of coupled inverted embedded on-chip lines: L and R results
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Examples 

Pair of coupled inverted embedded on-chip lines: G and C results
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Examples 

4 differential pairs on chip interconnect

+ all dimensions

in mm

+ ssig = 40MS/m

+ ssub = 2S/m

+ sdop = 0.03MS/m
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Examples 

eight quasi-TM modes

the modal voltages V = V0exp(-jf) 

are displayed (V0 =      ) @ 10GHz

quasi-even quasi-odd

slow wave factor: 

mode prop. velocity v = c/SWF
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Examples 

complex capacitance matrix @10GHz
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Examples 

complex inductance matrix @10GHz
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What if the cross-section varies along the propagation direction?

Perturbation along z

use a perturbation approach !

Quick illustration for a single line (with L & C complex – hence R & G are included)

+ perturbation around

nominal value

nominal

perturbation step 1

perturbation step 2

including this second order

is CRUCIAL !
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Example 

Fibre weave: differential stripline pair on top of woven fiberglass substrate

differential

stripline pair

cross-section of differential stripline pair

copper
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Example – cont. 

Fibre weave  - discretisation (in CAD tool)

cross-section a

cross-section b
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Example – cont. 

Fibre weave  - material properties

real part of dielectric permittivity e’r and tand as a function of frequency
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Example - cont 

Propagation characteristics for a 10 inch line

differential mode transmission forward differential to common 
mode conversion
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Monte Carlo method 

 Interconnect designers need to perform statistical 
simulations for variation-aware verifications

 Virtually all commercial simulators rely on 
the Monte Carlo method

 Robust, easy to implement 

 Time consuming: 

slow convergence 1/N
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Stochastic Telegrapher’s eqns. (single line):

 V and I : unknown voltage and current along the line

 function of position, frequency and of stochastic parameter b

 s = jw; Z = R + sL and Y = G + sC i.e. known p.u.l. TL parameters

 assume – by way of example - that b is a Gaussian random variable:

Stochastic Galerkin Method                                             

b mm

single IEM line

mean
standard deviation

normalized Gaussian
random variable with
zero mean and unit variance
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 step 1: Hermite “Polynomial Chaos” expansion of Telegrapher’s eqns.:

Z

?

Stochastic Galerkin Method                                             

?

Hermite polynomials 

&

“judiciously” selected inner product 

such that 

inner product 

our Gaussian distribution  inner product: 



39

 expanded TL equations

 step 2: Galerkin projection on the Hermite polynomials fm(x), m = 0,….,K

Stochastic Galerkin Method                                             

“augmented” set of deterministic TL eqns. 

(b has been eliminated)

+        deterministic

+ solution yields complete statistics, i.e.

mean, standard dev., skew, …, PDF

+ again (coupled) TL- equations

+ larger set (K times the original)

+ still much faster than Monte Carlo
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Example                                             

b b

z

cross-section AA’

A

 b : Gaussian RV: mb = 2 mm and sb = 10%        z : Gaussian RV: mz = 3 mm and sz = 8%

 transfer function: H(s) = V1(s)/E(s) (ii) forward crosstalk FX(s) = V2(s)/E(s) 

 compare with Monte Carlo run (50000 samples )

 efficiency of the Galerkin Polynomial Chaos
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Example 

full-lines: mean values m using SGM dashed lines: ±3s-variations using SGM

circles: mean values m using MC squares: ±3s-variations using MC

Transfer function H(s,b,z ) Forward crosstalk FX(s,b,z )

gray lines: MC samples 
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Can we do better?                                             

So far:

 tractable variability analysis of (on-chip) interconnects 

(and passive multiports) outperforming Monte Carlo analysis

 relies on Matlab implementations of the presented techniques

 only relatively small passive circuits with few random variables

Next:

 extension of techniques to include nonlinear and active devices

 extension to many randomly varying parameters

 integration into SPICE-like design environments

 perform transient analyses

 simulate complex circuit topologies including 

connectors, via’s, packages, drivers, receivers
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Integration into SPICE 

remember – slide 35 - PC projection and testing results in: 

“augmented” set of deterministic TL eqns.   can be directly imported in SPICE

average 
response

standard deviation

V

corresponding 
Gaussian 
distribution

random substrate thickness, 

permittivity and loss tangent

HSPICE Monte Carlo (1000 runs): … 38 min
HSPICE polynomial chaos: ……………… 7 s
Speed-up: ………………………………….. 310 x
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Linear terminations 

 PC expansion

 decoupled equations after projection

the deterministic augmented lines 
share the same termination:

CC

C
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Non-linear terminations 

the deterministic line m now has 
the following termination:

voltage controlled (nL0 , nL1 ,  ..) 
current source

applicable to

 arbitrary device models

 transistor-level descriptions

 behavioral macromodels

 encrypted library models

m
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Non-linear terminations 

= jq

the deterministic line m now has 
the following termination:

voltage controlled (nL0 , nL1 ,  ..) 
current source

applicable to

 arbitrary device models

 transistor-level descriptions

 behavioral macromodels

 encrypted library models

m
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Example  

random power rail resistance and package parasitics

16-bit digital transmission channel





49

= NPN 25GHz wideband trans.

2 GHz BJT LNA

25 random variables using a point-matching technique:

 parasitic R’s, L’s and C’s of BJT (10%)

 forward current gain (10%)

  lumped components in LNA schematic (10%)

 widths of 4 transmission lines (5%)

input power 

= 10dBm

for the same accuracy 105 Monte Carlo 

single circuit simulations are needed 

versus only 351 for the new technique

speed-up factor: 285


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Conclusions 

 broad classes of coupled multiconductor transmission lines (MTLs)             

can be handled;

 efficient and accurate RLGC modelling of MTLs from DC to skin-effect regime 

is possible thanks to the differential surface current concept;

 MTL variations along the signal propagation direction can be efficiently dealt 

with thanks to a 2-step perturbation technique;

 all frequency and time-domain statistical signal data can be efficiently 

collected for many random variations both in MTL characteristics and in linear 

and non-linear drivers, loads, amplifiers, … thanks to advanced Polynomial 

Chaos approaches – by far outperforming Monte Carlo methods; 

 for very many random variables the curse of dimensionality remains cfr. 

roughness analysis or scattering problems  ongoing research;

 initial statistics can be very hard to get e.g. a multipins connector 

 ongoing research.
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Questions and 

Discussion?

 additional reading material: see included list restricted to our own work

 additional questions: right now or at daniel.dezutter@ugent.be

Thank you for your attention!!

Q & A 
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