
CSC 444: Software Engineering I
Syllabus 2017

Software engineering covers engineering disciplines that are applied to computer
software production and maintenance.

Traditional software engineering courses usually focus on subdisciplines related to the
different stages of the “waterfall model” used by many, especially larger companies for
developing software, including IBM, BCE, Rogers, Telus, CGI, and any of the big banks
or insurance companies. The disciplines often covered in these traditional courses
include requirements analysis, system modeling, architectural design, software testing,
software maintenance, software reuse, project planning, project management, and
quality management.

This course will be different. It will primarily focus on Agile software development and
management, as used by modern companies, such as Facebook, Netflix, and Etsy. As
opposed to teaching in the abstract, all of the material taught will be practiced in the
context of a larger programming project that students will work on in groups. Most of the
time spent working on this course will be spent working on the group project. Some of
the languages that will have to be used in conjunction with the project are Ruby, Rails,
HTML, DOM, CSS, JavaScript, JSON, JSAPI, and JQuery.

Teaching Staff
Michael Stumm Instructor stumm at eecg.toronto.edu

Jonathan-F Baril TA jonathanf.baril at mail.utoronto.ca

Hao Wang TA haoece.wang at mail.utoronto.ca

Course Structure

Lectures 3 hours / week

Tutorials 1 hour / week

Labs 3 hours / 2 weeks

Lectures

Friday 3-6pm BA 1210 Starts September 8

Lectures are used to teach fundamental concepts of agile software
engineering and much of the material needed for successfully completing the
group project. Please see full schedule further below.

(Note that I did not chose these lecture times...)

Tutorials

TUT 01 Monday 10-11am BA2165
TUT 02 Wednesday 12noon-1pm AP120

Tutorials are used to go over the material taught in the lectures. At the
beginning of the term, tutorials may be used to teach new material related to
one of the programming languages so as to allow faster start on group project
work.

The precise schedule of these tutorials will be announced in class.

Labs

Tuesday 9-12noon GB251 Starts September 12

Although scheduled on a two-week schedule, students may attend any and all
of these lab sessions. TAs will be available throughout to answer questions
and assist in making the group project a success.

Mark Composition

Project Mark: 25%

Midterm: 35%

Final Exam: 40%

Note that the 25% of the mark being assigned to the project does not correspond to
the workload associated with the project. Much more time and effort will have to be
spent on the project than on anything else. Therefore, a significant part of the
midterm and final exams will be dedicated to examining students’ proficiency of
material learned as part of the group project.

Textbook
There is no required textbook for this course. All of the required reading is available
online, as are all of the required manuals. Excellent tutorials relevant to this course
are also available online. Nevertheless, although not necessary or required,
students may be interested in purchasing one of the excellent books available on
Ruby and Rails.

Lecture Schedule
Please note that this schedule will be modified and updated during the term.

Week 1:
September 8

Introduction to

 the course
 Software Engineering
 the course project

Ruby basics

Week 2:

September 15

Regular expressions

More on Ruby

Introduction to Model View Controller Frameworks

Introduction to Rails

Week 3:

September 22

More on Rails

REST

Version control and git

Continuous release and continuous deployment

Week 4:

September 29

Frontend languages I (HTML, DOM, CSS, Javascript)

Responsive web design

Week 5:

October 5

Frontend Languages II (JSON, JSAPI, JQuery)

Sessions

AJAX

Week 6:

October 13

Programming in the large

Behavior-driven design

Test-driven design

Week 7:

October 20

SOLID

Midterm

Week 8:

October 27

Software testing

Week 9:

November 3

No Lecture

Work on project

Week 10:

November 10

Software Quality
Software Metrics

Code reviews

Code smells

UML

Week 11:

November 17

No Lecture

Work on project

Week 12:

November 24

Traditional software engineering practice using the waterfall model

Software maintenance

Week 13:

December 1

6 hour session for project presentations

