ECE512S – Analog Integrated Systems, Winter 2015
Course Information & Syllabus

Instructor: Tony Chan Carusone

Contact: By Portal discussion board

Lectures: Monday, 4:10 – 5 pm (GB303)
 Tuesday, 5:10 – 6 pm (GB303)
 Thursday, 4:10 – 5 pm (GB303)

Tutorials: Friday, 9:10 – 11 am (BA2185)

Grading: 50% Final Exam
 40% Tests (Feb 6 & Mar 13 in tutorials)
 10% Assignment

 http://analogicdesign.com

Course description: Generally, this course deals with the analysis and design of analog signal
processing circuits and systems including:
 • Analog specifications: Noise & Dynamic Range, Chapter 9 (some parts)
 • Continuous-time filters
 – Quick review of LTI systems, Section 4.1
 – Filter design, Chapter 12
 • Analog discrete-time signal processing, Chapter 13
 • Switched-capacitor filters, Chapter 14
 • Data converter principles, Chapter 15 (some parts)
 • Introduction to Phase Locked Loops, Chapter 19

<table>
<thead>
<tr>
<th>Lecture #</th>
<th>Date</th>
<th>Topics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 5</td>
<td>Course overview & administration</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 6</td>
<td>Noise – basics, units, SNR</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discrete-time noise</td>
<td>9.3.7</td>
</tr>
<tr>
<td>3</td>
<td>Jan 8</td>
<td>Noise spectra</td>
<td>9.2</td>
</tr>
<tr>
<td>4</td>
<td>Jan 12</td>
<td>Input-referred noise</td>
<td>9.3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linearity</td>
<td>9.5</td>
</tr>
<tr>
<td>5</td>
<td>Jan 13</td>
<td>Dynamic range</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>Jan 15</td>
<td>Fully-differential signaling</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>Jan 19</td>
<td>Filter basics</td>
<td>4.1.1, 4.1.4</td>
</tr>
<tr>
<td>8</td>
<td>Jan 20</td>
<td>First-order transfer functions</td>
<td>4.1.2, 4.1.4, 12.1.1</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Topic</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>9</td>
<td>Jan 22</td>
<td>Biquadratic transfer functions</td>
<td>4.1.3, 4.1.5,</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Introduction to Gm-C filters</td>
<td>12.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First-order Gm-C filters</td>
<td>12.2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fully-differential Gm-C circuits</td>
<td>12.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biquadratic Gm-C circuits</td>
<td>12.2.4</td>
</tr>
<tr>
<td>11</td>
<td>Jan 27</td>
<td>Introduction to active R-C filters</td>
<td>12.8</td>
</tr>
<tr>
<td>12</td>
<td>Jan 29</td>
<td>Analog filter application: Guest lecturer Dr. Dustin Dunwell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test #1 covers up to here</td>
<td>12.8</td>
</tr>
<tr>
<td>13</td>
<td>Feb 2</td>
<td>Introduction to active R-C filters</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Feb 3</td>
<td>High-order filter responses: Butterworth</td>
<td>Sedra & Smith</td>
</tr>
<tr>
<td>15</td>
<td>Feb 5</td>
<td>High-order filter responses: Chebychev</td>
<td>Sedra & Smith</td>
</tr>
<tr>
<td>16</td>
<td>Feb 9</td>
<td>High-order filter responses: Elliptic</td>
<td>Sedra & Smith</td>
</tr>
<tr>
<td>17</td>
<td>Feb 10</td>
<td>Cascade design</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>18</td>
<td>Feb 12</td>
<td>Cascade design</td>
<td>Lecture notes</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Reading Week</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Feb 23,24</td>
<td>Guest lectures</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Feb 26</td>
<td>Review of discrete-time signals</td>
<td>13.1 – 13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downsampling, upsampling, sample-and-hold</td>
<td>13.4, 13.6</td>
</tr>
<tr>
<td>22</td>
<td>Mar 2</td>
<td>Introduction to switched capacitors</td>
<td>14.1</td>
</tr>
<tr>
<td>23</td>
<td>Mar 3</td>
<td>Switched-capacitor first order filters</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fully-differential circuits & switch sharing</td>
<td>14.4.1, 14.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switched-capacitor biquads</td>
<td>14.5</td>
</tr>
<tr>
<td>24</td>
<td>Mar 5</td>
<td>Discrete-time filter design, bilinear transform</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test #2 covers up to here</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Mar 9</td>
<td>Noise in switched capacitor circuits</td>
<td>9.3.7, 14.3</td>
</tr>
<tr>
<td>26</td>
<td>Mar 10</td>
<td>Charge Injection</td>
<td>10.3</td>
</tr>
<tr>
<td>27</td>
<td>Mar 12</td>
<td>Modeling A/D and D/A conversion</td>
<td>15.1 – 15.2</td>
</tr>
<tr>
<td>28</td>
<td>Mar 16</td>
<td>Online module (in-class lecture cancelled) on Quantization noise – see course website</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Mar 17</td>
<td>Quantization noise</td>
<td>15.3</td>
</tr>
<tr>
<td>30</td>
<td>Mar 19</td>
<td>Data converter specifications</td>
<td>15.4</td>
</tr>
<tr>
<td>31</td>
<td>Mar 23</td>
<td>Data converter specifications</td>
<td>15.5</td>
</tr>
<tr>
<td>32</td>
<td>Mar 24</td>
<td>D/A converter architectures</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>33</td>
<td>Mar 26</td>
<td>A/D converter architectures – Integrating</td>
<td>17.1</td>
</tr>
<tr>
<td>34</td>
<td>Mar 30</td>
<td>A/D converter architectures – SAR</td>
<td>17.2</td>
</tr>
<tr>
<td>35</td>
<td>Mar 31</td>
<td>A/D converter architectures – Algorithmic & Pipelined</td>
<td>17.3 – 17.4</td>
</tr>
<tr>
<td>36</td>
<td>Apr 2</td>
<td>A/D converter architectures – Flash</td>
<td>17.5</td>
</tr>
<tr>
<td>37</td>
<td>Apr 6</td>
<td>Introduction to Oversampling Data Converters</td>
<td>18.1 – 18.2</td>
</tr>
<tr>
<td>38</td>
<td>Apr 7</td>
<td>Introduction to Oversampling Data Converters</td>
<td>18.1 – 18.2</td>
</tr>
<tr>
<td>39</td>
<td>Apr 9</td>
<td>Introduction to Oversampling Data Converters</td>
<td>18.1 – 18.2</td>
</tr>
</tbody>
</table>