#### **Area 3: Analog and Digital Electronics**

D.A. Johns



# 1970 – 2012 Tech Advancements

- Everything but Electronics:
- Roughly factor of 2 improvement
  - Cars and airplanes: 70% more fuel efficient
  - Materials: up to 50% lighter
- Electronics:
  - Transistors/chip improvement: 500,000
  - Clock speed of microprocessor: 30,000
  - Signs of slowing down but still much more to go



## **Integrated Circuits 1950-60**

- Transistor invented 1947 (Bell Labs)
- Discrete components during 1950s
- Integrated circuit invented in 1959
  - Jack Kilby (Texas Instruments)
  - Robert Noyce (Fairchild) (then Intel)
- 1961 was first manufactured IC
- Bell Labs thought putting multiple transistors together in same device a bad idea due to increased failure rate



#### **Integrated Circuits 1970s**



Intel® 4004 processor Introduced 1971 Initial clock speed

108 KHz Number of transistors 2,300

Manufacturing technology

10µ



Intel<sup>®</sup> 8080 processor Introduced 1974 Initial clock speed

2 MHz Number of transistors

4,500 Manufacturing technology 6µ

Intel<sup>®</sup> 8088 processor Introduced 1979 Initial clock speed

5 MHz Number of transistors 29,000 Manufacturing technology 3µ



#### **Integrated Circuits 1980s**





#### **Integrated Circuits 1990s**



Intel\* Pentium\* processor Introduced 1993 Initial clock speed

66 MHz Number of transistors 3,100,000 Manufacturing technology

0.8µ



Intel<sup>®</sup> Pentium<sup>®</sup> II processor Intel<sup>®</sup> Pentium II Xeon<sup>®</sup> processor Introduced 1997 Initial clock speed

300 MHz Number of transistors 7,500,000 Manufacturing technology 0.25µ



Intel\* Pentium\* III processor Intel\* Pentium\* III Xeon\* processor Introduced 1999 Initial clock speed

500 MHz Number of transistors 9,500,000 Manufacturing technology 0.18µ



#### **Integrated Circuits 2000s**





Intel\* Itanium\* 2 processor

GH7 Number of transistors 220,000,000 Manufacturing technology

0.13µ

Introduced 2002

Initial clock speed

Intel\* Pentium\* D processor Introduced 2005 Initial clock speed

3.2 GHz Number of transistors 291,000,000 Manufacturing technology

65nm



Quad-Core Intel® Xeon® processor (Penryn) Dual-Core Intel\* Xeon\* processor (Penryn) Quad-Core Intel® Core®2 Extreme processor (Penryn) Introduced 2007 Initial clock speed

> 3 GHz Number of transistors 820,000,000 Manufacturing technology 45nm



## **Integrated Circuits 2012**

- Intel Ivy Bridge quad core
- 3.5 GHz clock speed
- 1.4B transistors
- 22nm technology (tri-gate)
- 77W of power



## **Analog Electronics**

- Learn basics of analog circuit design at transistor and board level
- Much more of the world is analog than people realize
- Most integrated circuits have significant analog





## **Digital Electronics**

- Learn basics of digital system design at transistor and architecture levels
- Required skill for anyone thinking of hardware career









#### **Career Opportunities**

- Graduate School: Circuit design is a rich area of Electronics with many research challenges and opportunities.
- Join industry: Anywhere in the world: Canada, US, Europe, Japan, China







#### **AREA 3 - ANALOG & DIGITAL ELECTRONICS**

| Fall Te             | rm - Year 3 or 4                 |                 |   | Lect. | Lab. | Tut. | Wgt. |
|---------------------|----------------------------------|-----------------|---|-------|------|------|------|
| KERNE               | L COURSES                        |                 |   |       |      |      |      |
| Ana                 | log Electronics                  | ECE331H1        | F | 3     | 1.50 | 1    | 0.50 |
| Digi                | tal Electronics                  | ECE334H1        | F | 3     | 1.50 | 1    | 0.50 |
| TECHNICAL ELECTIVES |                                  |                 |   |       |      |      |      |
| Ser<br>C            | nsory<br>ommunication            | <u>ECE446H1</u> | F | 3     | 1.50 | 1    | 0.50 |
| Ana<br>Pi           | log Signal<br>rocessing Circuits | ECE512H1        | F | 3     | -    | 2    | 0.50 |
| Inte<br>Ei          | grated Circuit<br>ngineering     | <u>ECE534H1</u> | F | 3     | 3    | -    | 0.50 |

| Winter Term - Year 3 or 4     | Lect.           | Lab. | Tut. | Wgt. |   |      |
|-------------------------------|-----------------|------|------|------|---|------|
| KERNEL COURSES                |                 |      |      |      |   |      |
| Analog Electronics            | ECE331H1        | S    | 3    | 1.50 | 1 | 0.50 |
| Digital Electronics           | ECE334H1        | S    | 3    | 1.50 | 1 | 0.50 |
| TECHNICAL ELECTIVES           |                 |      |      |      |   |      |
| VLSI Systems and<br>Design    | <u>ECE451H1</u> | S    | 3    | 3    | - | 0.50 |
| Analog Integrated<br>Circuits | ECE530H1        | S    | 3    | 1.50 | 1 | 0.50 |
| Digital Systems Design        | ECE532H1        | S    | 3    | 3    | - | 0.50 |
|                               |                 |      |      |      |   |      |



## **Electronics – Kernel Courses**

#### ECE331: Analog Electronics

(extension of 2'nd year analog electronics course)

- Transistor amplifiers (inside an opamp)
- Biasing techniques
- Frequency response
- Feedback analysis and stability

#### **ECE334: Digital Electronics**

(Transistor and gate level circuit design)

- Transistor models and spice simulation
- IC fabrication basics and layout
- CMOS gate design and transient response
- Latches, registers, adder cells
- Memory design (SRAM, DRAM, ROM, FLASH)



### **Electronics – Depth Courses**

#### ECE530: Analog Integrated Circuits (analog)

- Opamp design, comparators, A/D and D/A converters
- ECE512: Analog Signal Processing Circuits (analog)
  - Filters, oversampling, noise in analog circuits.
- ECE451: VLSI Systems and Design (digital)
  - Complex digital systems (eg. Microprocessor)
- ECE532: Digital Systems Design (digital)
  - Hard/software interfacing, memory interfaces, ...
- ECE534: Integrated Circuit Eng. (analog or digital)
  - IC fabrication, modelling, packaging, yield, ...



## **Analog Electronics – Related Courses**

- ECE334 Digital Electronics (kernel)
  - most integrated circuits contain both digital and analog
- ECE302 Probability & Applications
- ECE431 Digital Signal Processing
- ECE316 Communication Systems Signal processing and communications closely related
- ECE335 Introduction to Electronic Devices
- ECE535 Advanced Electronic Devices



# **Possible Analog Path**

- 3rd year
  - ECE316 Communication Systems (k)
  - ECE331 Analog Electronics (k)
  - ECE335 Introduction to Electron Dev (k)
  - ECE320 Fields & Waves (k)
  - ECE302 Probability & Applications (d)
  - ECE334 Digital Electronics (k)
  - ECE311 Dynamic Systems & Control (k)
  - ECE472 Engineering Economic Analysis



# **Possible Analog**

- 4th year
  - ECE496 Design Project
  - ECE512 Analog Signal Processing (d)
  - ECE534 Integrated Circuit Engin (d)
  - ECE431 Digital Signal Processing (d)
  - ECE451 VLSI Systems and Design (d)
  - ECE530 Analog Integrated Circuits (d)
  - ECE422 Radio and Microwave Wireless Systems (d)
  - ECE496 Design Project



#### **Digital Electronics – Related Courses**

- ECE342 Computer Hardware
- ECE452 Computer Architecture Digital design at the upper architecture level
- Any number of software courses. Digital chips these days are done with verilog/VHDL, system C, etc.
- Good digital designers are good software designers (but they can't make errors – even more rigorous testing)



# **Possible Digital Path**

- 3rd year
  - ECE316 Communication Systems (k)
  - ECE344 Operating Systems (k)
  - ECE334 Digital Electronics (k)
  - CSC444 Software Eng I (d)
  - ECE361 Computer Networks (k)
  - ECE 342 Computer Hardware (k)
  - ECE345 Algorithms and Data Structures (k)
  - ECE472 Engineering Economic Analysis



# **Possible Digital Path**

- 4th year
  - ECE496 Design Project
  - ECE534 Integrated Circuit Eng (d)
  - ECE552 Computer Architecture (d)
  - ECE454 Computer Systems Programming (d)
  - ECE431 Digital Signal Processing (d)
  - ECE451 VLSI Systems and Design (d)
  - ECE532 Digital Systems Design (d)
  - ECE496 Design Project

